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A piecewise-linear growth model:
comparison with competing forms in batch culture
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Abstract. A simplified one-dimensional growth model based on the mass conservation
law is proposed. Mathematically,  it  represents an easiest special case of so called L-
systems.  The model  developed being considered as a descriptive  tool of the growth
curves is compared with four other similar and widely used models, in application to
numerical data of bacteria (taken from literature) and of algae (an original experiment)
growing in batch. Identification of free constants of the five models in comparison is
performed  using  a  nonlinear  least  squares  iterative  procedure,  for  which  special
programs  were  written.  Theoretical  and practical  (approximative)  merits  of  the  new
model are shown and discussed.
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Introduction

A dynamic,  deterministic  model  of a cell  population  growing under conditions  of limited
resources (batch culture in microbiology) can be presented in the following general form:

(A)

Here x(t) = value of a size attribute of a whole cell population at time t (for instance, biomass,
density, area, etc.), si = value of ith resource (quantity or concentration of ith substrate, etc.),
and F = function to be formalized involving biological assumptions. Adding to (A) the mass
conservation law in the form of quasichemical reaction,

(B)

where Yi = stoichiometrical  (or the growth yield)  coefficient  of the  ith resource,  one can
obtain a one-dimensional differential growth equation with respect to x.

Equation  (A)  gives  a  general  framework,  into  which  fall  many  well-known  growth
models. Recent success achieved in developing this class of models was
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based on using a dynamical form of the ancient concept of the optima and limiting factors
known  as  Blackman's  (Blackman  1905),  or  Liebig's,  or  «bottleneck»  (Poletaev  1974)
principle. It implies that the current rate of growth is limited, at any moment of time, by the
rate of assimilation of a single «slowest» factor. Thus, instead of (A), we have:

(C)



where symbol min ( ) implies that the minimum should be chosen from expressions within
braces, at any time. Mathematical aspects of this formalism called L-systems (for limiting
factors and for Liebig) were elaborated by the Novosibirsk group (Lyapunov 1972; Poletaev
1974, 1979). A model constructed below represents a special case of L-system and brings
some practical support to this general approach.

When the chemical composition of the biomass synthesizing remains (or can be regarded,
approximately) invariable, all Yi in (B) become constant, and we can try to interpret (A) as an
equation with constant coefficients. Efforts to describe cell population growth by means of
such an equation were made over a few decades (McKendrick and Poi 1910; Blackman 1919;
Robertson 1923;  Lotka  1925;  Pearl  1940;  Monod 1942;  Richards  1959;  Lyapunov  1972;
Poletaev 1974 and 1979) and led to the following four most known and widely used models
(Causton and Venus 1981):

(i) (the logistic equation)

(ii) (the Gompertz model)

(iii) (the Monod model)

(iv) (the Richards model)

Here x approaches asymptotically to its maximum value x = g (the lower asymptote is x = 0);
k in (i) and (iii) and  k/m in (iv), are usually considered as maximum relative growth rate,
whereas k in (ii) is merely a factor; then, in (iii),  a is a product of Y and K where Y = yield
coefficient and  K = half-saturation (or effective Michaelis') constant, both with respect to a
single limiting substrate; m in (iv) is an auxiliary parameter without clear biological meaning,
– l ≤ m < ∞, m ≠ 0. Constants k, g and a are essentially positive.

Model  (iii)  is  used  primarily  in  microbiology,  models  (ii)  and  (iv),  in  higher  plant
biometry  where  a  main  organ  system or  a  whole  plant  is  regarded  as  a  cell  population
consuming  the  «substrate  of  fresh  assimilates»  of  vegetation;  model  (i)  (the  logistic,  or
Verhulst-Pearl equation) is used in the mentioned fields as well as in the quantitative theory of
animal or human population.

Equation  (i)–(iv)  were  conceived  as  mechanistic,  i.e.  having  parameters  of  some
biological relevance and giving an insight into the process of growth in
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non-singular environment.  Historically,  each of these equations,  when they appeared,  was
claimed to be a fundamental law of biological growth: of a cell population, of a plant tissue,
animal population or even of any living system. However, after Feller's classical work (1940)
it became obvious that such a universal law presented in the form of a differential equation
with constant coefficients could hardly exist; instead, several competing mathematical forms
expressing  growth  phenomena  on  a  theoretically  acceptable  basis  should  be  considered
together and compared in application to particular growing systems.

Equation (i), (ii) and (iv) possess explicit solutions with respect to x, whereas in Eq. (iii)
one can only find an expression for t as a function of x:



(a)

(b)

(1)
(c)

(d)

where x0 = initial size. Notice that Eq. (iv) turns into Eq. (i) at m = 1, and into Eq. (ii), at m
approaching zero, so (i) and (ii) are merely particular cases of (iv).

An important advantage of Eq. (i) and (iii) is that they follow from the mass conservation 
law which, for the case of single substrate limitation, has the form of equality:

(2)

On the contrary, Eq. (ii) and (iv) cannot be derived through expression (2), which makes them
semi-empirical, especially (iv), considering its artificial parameter m.

Equality (2) implies one-by-one correspondence between substrate consumption and new
cell material formation. The fulfilment of (2) should be expected to remain fairly true in one-
dimensional simplified systems like those in question. The fact that Eq. (ii) and (iv) do not
satisfy (2) lessens their importance since it becomes impossible to put them at the base of
continuous culture models (chemostat).

Piecewise-linear (PWL) model

To derive the growth equation, we distinguish two different regimes of growth: a) free growth
in which the growth rate is constrained by some internal reaction, while the limiting substrate
is available to the cell in a sufficient or excessive amount; and b)  exerted growth in which
external substrate level limits and controls the growth rate. Such a distinction is not itself new
(Debes et al. 1973), but it needs some further formal justification.

A main model assumption accepted here states that the growth rate of a cell population is
proportional to the number of cells which are not affected by substrate shortage, at any given
time  of  the  two  regimes.  Mathematically,  this  implies  that,  instead  of  the  traditional
assumption of proportionality of dx/dt to the product xs, we introduce proportionality of dx/dt
to a logical product 
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(disjunction) {x}∩{s}, where {x} is the total number of cells and {s} is an available number 
of all substrate «portions», each being equal to the substrate quantity consumed by a 
normally developing cell at unit time. Thus, one can write:

(3)

where the constant W, W ≤ Y, has the same dimension as Y and can be interpreted as a yield 
coefficient of the exerted growth. Substituting (2) into (3) we have eventually:



(v) (PWL model)

where b = W/Y. Solving (v), one obtains the following continuous and continuously 
differentiate function:

(4)

where

(5)

Function (4) being plotted represents a sigmoid (S-shaped) concave-convex curve, skew-
symmetrical with regard to point (5) at W = Y, and asymmetrical at W≠Y. Point (5) is similar
to point of inflexion  d2x/dt2 = 0 of models (i)–(iv). The concave part of (4) (when t ≤ tp)
corresponds to the free growth whereas the convex one (when t ≥ tp), to the exerted growth.

Experimental data

(1) Thornton's data. These six-point data demonstrate the increase of the area occupied by a 
growing bacterial colony (B. dendroides) and are taken from Feller (1940) who referred to 
Lotka (1925). Time was measured in days and the area, in square centimetres.

(2) Dunaliella data. Our own three experiments made with the halotolerant green unicellular
alga  Dunaliella parva (Lerche strain, No 19/9) in batch were performed in parallel (under
identical conditions, differing one from another only by initial concentration (inoculum)) and
lasted two weeks. The numbers obtained are presented in Table 1, time (t) given in hours, and
concentration of the culture, (x), in Klett Units (KU), for it was measured by means of the
Klett  photometer.  The  composition  of  the  medium  and  the  environments  used  in  the
experiments are described elsewhere (Ginzburg and Ginzburg 1981).

Analysis and comparison

A nonlinear least squares iterative procedure was used to determine the constants of best fit 
for the five forms tested against the data. The quantity being minimized
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was the sum of the squares of errors:

(6)

where N = number of observed data points (ti, xi), and ƒ is the fitting function.



Table 1. Growth of Dunaliella

(t)
Hours

(x) Optical density
Klett units

Experiment I Experiment II Experiment III
0 1.0 6.0 14.0
24 10.5 26.0 38.7
43 26.2 48.0 57.5
96 52.7 65.0 61.5
120 62.7 74.5 65.0
144 67.7 82.5 65.0
168 71.5 84.5
192 75.2 87.7
264 75.0 91.7
336 78.7 100.2

Since ti and  xi are known constants,  then Q becomes a function of growth parameters (k,  g,
etc.) which are to be found in the process of minimization. Denoting those parameters pi (i.e.,
pi = k,  p2 = g,  p3 =  third  parameter  if  it  exists;  p4 = x0), one  can  reduce  the  problem  of
minimization (6) to numerical solution of the following set of transcendental equations:

(7)

This classical technique was applied, but proved to yield negative values of p1 and p3 for
Monod's  model.  Furthermore,  since  for  the  Monod  case  one  has  to  solve  transcendental
equation (lc) with respect to x on each iteration and for each observed point, the results have
to be substituted into (6), then this numerical procedure becomes exceptionally tedious and
the set of Q obtained can hardly be regarded as reliable in the comparison, especially because
of  probable  accumulated  errors.  Therefore,  the  problem  of  minimization  of  (6)  was
reformulated  as a  problem of dynamic  programming with constraints  pi > 0,  i = 1,  2,  3,  4
(except for i = 3,  for the Richards form) and a special  algorithm similar  to the simplified
gradient method was developed and used (see Appendix).

Table 2 shows the results corresponding to the best fit to each of the five models for four
sets of data. The arbitrary constants (k, g, third parameter, and x0) are given along with the
sum of the squares of errors, Q. The columns headed (tp) and (xp) represent coordinates of
point of inflexion of the growth curve for the first four models, and the coordinates given by
equalities (5), for the PWL model,  so that d2x/dt2 in any case changes its sign at  t = tp.  It
should be kept
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in mind that Richards' “flexible form” will always produce a fit not worse than the logistic 
and Gompertz ones.



Table 2. Comparison of the models. Best fit of the four data sets against the logistic,
Gompertz, Monod, Richards, and piecewise-linear (PWL) models

Thornton's
data

k
div/day

g
cm2

Third
constanta

x0

cm2
tp

day
xp

cm2
Q

cm4

Logistic 1.9593 49.88 — 0.370 2.499 24.940 0.1275
Gompertz 1.2040 52.15 — 4.10 2.197 19.186 7.8078
Monod 2.7434 49.05 43.36 0.850 2.711 29.111 1.3870
Richards 1.9811 49.83 1.016 0.370 2.502 24.991 0.1171
PWL 1.5078 51.80 0.691 0.649 2.310 21.167 1.8191
Dunaliell

a
data

div/h KU KU hour KU KU2

(I)
Logistic 0.03339 75.78 — 6.40 71.38 37.89 75.858
Gompertz 0.02275 77.15 — 3.16 51.06 28.38 24.609
Monod 0.08915 75.33 164.4 7.29 78.72 41.21 98.840
Richards 0.01815 78.27 – 0.489 0.26 35.92 19.83 13.154
PWL 0.07745 79.34 0.188 1.54 27.08 12.54 15.145
(II)
Logistic 0.02500 93.37 — 16.97 60.18 46.68 315.01
Gompertz 0.01832 94.85 — 13.23 37.01 34.89 191.84
Monod 0.21901 93.40 789.2 17.60 63.08 48.01 330.05
Richards 0.01126 99.10 –1.000 6.64 0.00 6.64 70.41
PWL 0.15685 99.10 0.072 6.64 0.00 6.64 70.41
(III)
Logistic 0.07581 65.01 — 13.18 18.06 32.50 13.824
Gompertz 0.05221 64.55 — 13.18 8.87 23.75 20.959
Monod 0.07010 63.73 29.59 14.76 26.24 40.77 9.684
Richards 0.09448 65.00 1.788 13.96 22.26 36.63 11.866
PWL 0.04244 63.95 1.658 13.99 24.69 39.89 7.562
a i.e. a = KY, for the Monod form: cm2, KU; m, for the Richards form: divisions; b = W/Y, for the 
PWL form: divisions.

(1)  Thornton's data.  These data were often quoted as a support for the logistic  form, the
agreement being considered as the best available or even [best] possible (Lotka 1925; Feller
1940). Quite naturally,  the Richards form fits the data better (see Table 2). But it must be
emphasized  here  that  four  out  of  the  five  models,  namely  (i)  and (iii)-(v),  fit  these  data
extraordinarily well. This result does not seem too unexpected, since, firstly, Thornton's data
actually  lie  very  accurately  along  the  S-shaped  concave-convex  symmetrical  curve  and,
secondly, they consist of only six experimental points whereas each model contains three or
even four arbitrary constants to be varied. And even the Gompertz model which showed the
worst fit (being the only one asymmetrical in principle) can be regarded as
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appropriate and applicable to Thornton's data. Indeed, an average daily increase (DI) of the
bacteria colony was 8.19 cm2, whereas an average difference between an observed
and a computed point,



(8)

was, for the Gompertz form, much less: d = 1.00 cm2, so it can be considered acceptable.
Comparing values of d for the logistic and the Richards forms (0.11 and 0.13 cm2) and, then,
for the Monod and the PWL ones (0.41 and 0.49 cm2), we should conclude that differences
between the pairs hardly exceed errors of measurement.

(2)  Dunaliella  data.  In  our  first  biological  experiment,  an  S-shaped  growth  curve  was
obtained. It has a very short (some 30 h) concave part (free growth) and a long (about 300 h)
convex part (exerted growth). Average daily increase was 5.55 KU, and both concave and
convex parts were relatively slightly sloping, so the computations according to the models
with fast saturation, namely the Monod and the logistic ones, produced worse agreement with
the observed data. (Notice that the greater a = KY, the closer Monod's model to the logistic.)
The best fit with the experimental data was obtained for the Richards and the PWL models,
which must be considered here as yielding undistinguishably good approximation, since d for
them equals to 0.92 and 0.98 KU, correspondingly.

In our second biological experiment, a purely convex curve was obtained, i.e. a curve
with x0 = xp, tp = 0. Obviously, the first three models should not be expected to describe this
pattern of growth since they inevitably possess some concave part. This prediction was quite
well  confirmed by computations  which produced  tp unequal  to  zero and large  Q,  for  the
logistic, Gompertz and Monod forms. In this experiment, DI = 6.73 KU, i.e. it has the same
order as  d which was equal to 4.01, 3.29 and 4.01 KU, respectively, so all the three forms
should be regarded here as inapplicable. The best agreement was found for the Richards and
PWL models. Not surprisingly, the computed curves for them coincided, since at m = –1 the
Richards model gives the same mathematical form as the PWL one.

In our third biological experiment,  a steep concave-convex curve was obtained. Since
DI = 8.50 for it and, therefore, saturation was fast, the computations along logistic and Monod
models gave comparatively good approximation. In this particular case, the fit obtained for
each model should be considered as acceptable but the best agreement was exhibited by the
PWL model.

Discussion and conclusion

Proceeding from the above comparison and analysis,  one can at least assert that the PWL
model proved to be a good approximation tool for some research and practical needs. For two
out of the four data sets involved, the PWL model showed an agreement with the experiments
which was not inferior to the Richards form which is usually regarded as the most flexible
one-dimensional growth
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model. We have also shown that only the Richards and PWL models, out of the five models
analyzed, can describe purely convex growth curves. And when choosing between them, one
should give preference to the PWL model, even if Q corresponding to it is a little greater,
since it is just the biologically unreliable parameter m which yields flexibility to the Richards
form. On the other hand, the PWL model has the same number of arbitrary parameters which
have very transparent biological meanings. Moreover, the PWL model was derived directly
from the mass conservation law, therefore it can be readily used as a basis of the chemostat
theory. At last, mathematically it is simpler than the Richards form.

As concerns two other forms based on the mass conservation law (2), i.e. the logistic and
the Monod ones, both were found to be inapplicable to the second  Dunaliella experiment



(purely convex curve) and fitted the two remaining sets of  Dunaliella data worse than the
PWL model. Notice that in the three Dunaliella experiments, a probable limiting factor was
carbon (from NaHCO3 of the medium or/and from atmospheric CO2). Since carbon constitutes
about 50% of dry weight of the cell, and optical density of 1 KU corresponds roughly to 2.5
mg/litre of the dry weight (Ginzburg and Ginzburg 1985), one can estimate magnitudes of the
effective  Michaelis  constant,  K,  as  some  205,  986  and  36  mg/litre,  correspondingly  to
a = 164.4, = 789.2, = 29.59 KU listed in Table 2. In contrast, K = 12 mg/litre for Escherichia
coli in Monod's experiment (1942) (according to Dabes et al. 1973). In any case, since the
constant a = KY is expected to be much less than g, the Monod model can hardly be regarded
as applicable to Dunaliella data I, II and III. At a so large, the constants k and K obviously
lose their usual biological meaning.

The Gompertz form produced a worse fit to all the four data sets as compared with the
PWL and Richards forms. It has also shown worse  agreement than the logistic and Monod
forms in describing steep symmetrical curves (Thornton's data,  Dunaliella data III), but, on
the other hand, it had an advantage over those two forms in the interpretation of asymmetrical
and slightly sloped curves (Dunaliella I and II).

Appendix

For minimization of (6), the following numerical procedure was used. To initiate the iterative
process,  a  feasible  solution  p10, … , p40 (usually,  that  found as  a  solution  of  the  classical
approach (7)) is to be chosen, Q0 (p10, …, p40) computed and steps hi, each with respect to each
parameter pi, assigned. Then the following values,

are to be computed, where ni = 0, 1, 2, … , and the minimum among them is assumed to be
Q1(p11,…, p41). This process continues until n1 = … = n4 = 0, at some sth iteration, when Qs is
considered as Qmin for the model in question, and p1s, … , p4s, as the optimal set of parameters.
In  fact,  this  iterative  algorithm examines  the  neighborhood [rather,  vicinity] of  a  global
feasible  minimum,  which  function  (6)  always  possesses.  A  corresponding  program  was
written for the personal computer Apple II (in Basic).
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