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MO STRUCTURAL HETEROGENELITY IN FHOTOSYNITHESI1S:
A UNIFYING MODEL FOR THE RESFPONSE CURVES

. r vuri Keolker and H.Z.Ginzburao
Abstract

fomechanistic model describing photosvnthesis rate of & 2heterogenecus
Lissue or population is presented and discussed. [t results in a family of
mathematical Forms expressing the rate of photosvnthesis as a function of
external limiting factor densities. Most of acknowledged semi-empirical
iéqht"rﬁspnnsa antd Cls—response curves., the rectanoulsr hyvperbola among
}hemﬂ follow from the new formalism as particul ar Cases. For derivation of
the model, parameters of an idealized local EBlackman-type curve were
treated as chance values distributed sccording to the Gamma probability
density function. The model distinguishes energetic and capacity types of
heterogensity,. [t is, in principle, Ehn;"dimmnsimnal, though +ull set of
gimple formulag ware obtained merely for two-dimensional case. Richness
and Fflexibility of the model are demonstrated by many graphic computer

simulations.
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Introduction

Heterogeneity is commonly understood as one of the most essential featuwres
of photosynthesis (Rabinowitch, 1951). Two kinds of heterogeneity are
usually distinguished.lThe first follows from the fact that the chloraophyl
and catalyst molecules participating in photosynthesis are available
nonuniformly in different parts of a chloroplast, i.e. it reflects the
internal structural heterogeneity (including anisotropy) of the sensitive
apparatus. The second is causéz-;;wg:;:gularity of light and reactants
supply to different pigment particles. In this work, we shall consider
only the first type of heterogeneity: the structural heterogeneity.

Heterogeneity is closely connected with random nature of reactions in
cells and with variety of these reactions. Even in vitro, inner and outer
conditions o©f a reaction are permanently changing, and the rate of each
reaction is randamly liable to these changes. The heterogeneity in such an
intricate system can be regarded as one of effects of stochastic character
of mast processes, and, inversely, randomness of the processes inside
cells may cause phenomena that are usually interpreted in terms of
heterogeneity. :

It is because of heterogeneity and stochastic nature of
photosynthetic tissues (or autotrophic populations), a controversy about
the intrinsic shape of the light curves was protracted along several
decades. Two general principles were enunciated about this shape.
According to the Rlackman’'s law of limiting factors (Blackman, 1905). the
rate of photosynthesis linearly increases with the increase in value of a
single external limiting factor as long as this factor remains "slowest",
and ceased to be dependent on it when another factor becomes limiting. As
an alternative to it, Bose (1724) suggested that the effect of certain
change in a factor on the vield of photosynthesis is independent of the
pravailing values of the other factors. Equally reliable measurements were
done in favour to the both concepts, so the controversy was not so +far
entirely overcome (Rabinowitch, 1953).

What was commonly adopted from Blackman’'s concept is the idea that
the photosynthesis rate may be expressed as a Ffunction of one siternal
limiting factor (usually, of light or carbon dioxide density) with a few
constant coefficients. Such relationszhips are known as light-response and

ChDx-response curves. Most important of them are listed below and drawn
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in Eig. 13

A p = min {ax, Pml Blackman (1908)
(B p = Pm tanh (ax/P.} Jassby and Flatts (197&)
tic) g = Pn (1 - expl{-an/P.,) Feat (1270)
(S5 p = ax (1 - exp(~Pm/ax} Thornley (1976)
axPm
(E} p = Vollenwieder (1%70)

(Pm? + ax2)rsa

axF.,
(F) p = —— {the rectangular hyperbola)
ax + Fm
Here, p is the rate of photosynthesis, % is an external limiting Ffactor

density (@.g. light flux density, carbon dioxide density, etc.), and a and

Prn are constants. Srﬂriﬁégﬁtz

Forms (A) - (F) are also plotted in Fig. 2 in secondary (p, p/x)-
coordinates convenient to analyze curves in complete ranges of values of
the both variables, ¥ (0 £ % @ and p (0 fp LPn}. The initial ordinstes
antd +final absecissaz in Fig. &£ are egual, respectively, to the initial
slopes, a, and to the asvmptotic plateau levels, P.,., in Fig. 1. &1L
curves in Fig. 2 are normalized: they intercept abscissa at p = P, =1,
and ardinate, at p/% =a = 1.

All forms (A - (F) are two-parameter (other models of three and more
parameters welre deliberately excluded) and semi-empirical
(Thornley, 1976). 611 of them show an evidence of the Following two
impertant features confireed by numerous theoretical and experimental
investigations (Rabinowiteh, 1951 Thornley, 197&6; Tenhunen et al.,
1980) ) ¢

1*. The overall photosynthesis rate (p? of & plant tissue or
avtotrophic population is a monotonous, convex in ageneral (withowut points
of inflection) function of an external limiting factor density Cae) thies
function starts from the origin with & Finite initial slope (a}) and
asymptotically approaches a plateau level (Pgnli

2%, There exists a well-recognized linear localilty of thisg Hfunction
at lower limiting factor densities: near the origin, where the derivative

dp/dx (2 a) is approximately constant.
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Apart to the Blackman's form (A), an exclusive place among forms
(A = (F) belongs to the widely used rectangul ar hyperbol a (F).
Mathematically, it 18 conceived a8 & simplest one (though, strictly
speaking, form (A is simpler). Physiologically, its wvalidity, though
havirng not a mechanistic base, is indirectly corroborated by references to
thie ﬁagiigﬁﬁuﬁ_ sciences: it is adopted as the Langmuir isotherm, in
surface adsorption theory (notice that the photosynthesis reactions are,
at least in party sur-face reactions {(Rabimowitch, 19%51i)), and as the
Michzelis-Menten eguaticen, in enzymologyy it ie alzo kEnown and adopted in
plant arowth theory, nembrane transport and population dynamics. In these
adipining fields, as well as in the theory of photosynthesis, this

rectangular  hyperbola is commonly considered as a representation of the

Lase of homogeneity (Rabinowitch, 195913 Tthornley, 197&).

It is usuwally said (Thornley, 1%7&) that the Blackman piscewise-
linear AForm (A and the rectangular hyperbola (F) yvield two extrenes
restricting all reasonable response curves., Obther forms plotted with  the
same initial slope and asymptotic platean lie between (A) and (F) (=ses
Fig. 1 = 2): the further gives the stespest response, while the latter,
the most gradual one. In the normalized secondary (p, p/rl-coordinates
(Fig. 2}, the rectangular hyperbola plots as a straight "main diagonal”
crossing the unit sguare from the left upper angle to the right lower one,
all other curves lied above 1t. The Blackman curve plots in (p, p/ri-=
coordinates as a two-part broken line shaped by the upper and ©Lthe right
lateral edges of the wunite souare.

fhe rectangular hyperbola (F) can be extended to allow for the mutual
effects of two external Ffactors, x,. and x= {(g.g. light and CO=
(Thornley, 197&6)., Taking x For %2 and assuming that P. = bys, where
b is a constant, one procures a symmebtrical function of the two arguments:

ab Hane
P B oem— (1)
ax: + bxwo
Form (1) is & rectangular hyperbola with respect to both x,. and 3w, =o
it wields a conseguent generalization of the one—dimensional rechangul ar
hyperbola (F). Similar extension to the case of two external factors may
be dong with forms (A2 - (BE) as well.

Fem 1) may  be conceived as an erample of formalization of Bose's
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postulate. Indeed, a change in %X, (xz) alters +*the photosynthesis rate
independently of xz (ki) if the latter is +ixed. Practically, {1)
describes a case when one of the twe arouments are fixed or changes in a
restricted range; a change of this argument influences both the initial
slope and the asymptote of (1), Yet if both %. and Xz increase without
limit, the asymptote of (1) alse approaches infinity: clearly a
nonphysiological result {(Thornley, 197&).

Tae avoid this difficulty, an alternative procedure putting an
absolute maximum on photosynthetic rate can be obtained {Thornley, 197&).
It assumes that P, in (F) is not a linear but a hyperbolic function of
the second argument : P = F mbx=/{F',, + bx=z), where b is a
constant and P',, is the maximum photosynthetic rate at both external

factors saturated. Mow from (F) transforms into

ab¥ 1% =

axy + bx= + abdaiHa/F ' m

Flurality and diversity of the mathematical Forms known in the
literature and their sami-ampirical nature (Rabinowitch, 1951
Thornley, 197&) testify in themselves that a unifying mechanistic approach
iz desirable. Such an approach shouwld be based on clear and profound
phyvsiological implications {Feller, 1940) and provide a formalism +from
which the most freguently encountered formulae (i.e. (A} — (F), (1)y-—-(2)
and, hopefully., others! follow as particular cases. A plausible solution
for this unifying problem is suggested below.

Homogeneity: 8n Idealized Response Surface

Blackman’'s concept of limiting factors implies the chemical constancy and
strict mechanical uniformity of a biomass synthesized and, therefore, the
atrict and constant stoichiometry of the process of photosynthesis. It is
because of this Blackman insisted so obstinately that his simple
quantitative rule is an exact law of nature (Rabinowitch, 1951). In these
terms, his principle is the law. indeed, but with one essential
reservation: it is valid merely Ffor an extremely idealized case that

practically never encounters in the living nature. In the present paper.
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this ideslized case will be, by definition, called the case of the

shiructural homggeneity which implies +that in different parts of a

chloroplast (in sach elementary photosynthesizing center) the chlorophyl
and catalyst molecules are available wuniformly.

Ihus, BHlackman's concept and formalism are taken here for more than
"a anod first approdimation' A1 they are freguently Ltreated
{Rabinowitch, 1951). We assume Form (A to be a estrict mathematical
representation of the photosynthesis response of an idealized pure
homogereous tissue (population)., in sach photosvnthesizing center of which
a pursly deterministic photosynthesis obeying to the strict steoichiomebtric
equality is taking place. Hence form (A) will be considered as & starting
point for a guantitative modelling of the structural heterogeneity of the
photosynthetic aspparatus.

Let 31, Mmy --- BE messures (densities) of the esxternal material
and/or energetic components (potential limiting factors) necessary for

photoesynthesis., For an idealized homogeneous biomass. the overall rate of

photosynthesis, p, calculated according to the law of limiting factors,
may be weitten as
P o= min {8131y baiay vesy Fmd (3)
whEr e @y are the coefficients connected with the energy of
W\.-"\.--‘L_,.-\

photoeynthesis, and P, is the own top photosynthetic efficiency of the
photosyvnthesizing biomass: its physiological plateau level which could not
be excesd at whatever amounts and proportions of all x..

In such a model, to satw-ate the photosynthetic svetem with one of
the external components means to reduce the dimension of (3). If at  any
current moment of  time all cowmponents but one, M., are available to the

photosynthetic apparatus in comparative excess, form (A) follows from (3):

pix.) = min {a.x., P’ £4)

i.2. the two-dimensional case is aobtained. I+ a interchangse of anly two
limiting AFactors, xs and Ky, 15 possible while FPm i858 practically

unreachable, (3 transtforms into

plrad = min {@asa, @45 373 (5

which e call  the incomplete three-dimensional case. I+ then the
physiological plateauw level P, iz reachable whilst two limiting Factors
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can alternate and saturate. one gets a (complete) three-dimensional case:

plxs) = min €aiXsy A@s¥sy Ful (a)

In this paper, we construct heterogeneity models corresponding to
forms (4)-({4) and discuss ways to extend these models to many-dimensional

case (3).

Heterogeneity: Main Premises

Let wus consider a heterogensous photosynthesizing biomass as a mosaic of
randomly distributed elementary homogeneous centers (less or equal to
chloroplasts in size) which efficiency is described by (4), (35) or (4).

Since the processes of assimilation of &l1 ., are subjected to
numerous unstable influences {(errors in measurements of x: among them),
the parameters as and P, should be treated not as constants but as
random values distributed according to somewhat multivariate joint
probability density function f(a;, Pm).

Mow, in order to obtain the overall rate of the photosynthesis (p) of
a given heterogeneous biomass, one has to average current photosynthetic
rates of all homogeneous elementary centers. Since sizes of these centers
are very small, the continuous averaging is preferable, and the problem
reduces to calculation of the following mathematical expectancy:

p = fda,fdag Ina., Pm) p(xi} dPm (7)
o (=} o

where pix:) is defined by (3), (4}, (5) or (&), and the integration is
subtended along the positive semi—axifies of the parameters a., Pan,
since all of them are essentially pusitiva.

Elementary phctusynthesxz?;;hhcenters may wvary in their ﬁqstgg&iﬁ
aFFiEity to external components, which is reflected in the rates of
agssimilation, or, in our terms, in the parameters a.,. These centers also
vary in their own inherent photosynthetic capacities, P.. Hence we shall
further distinguish two types of structural heterogeneity: the energetic
heterocoeneity {(with respect to a.) and the capacit het el {with
respect to P.). Coexistence of the both will be called the complesx
{structural) heterogeneity.
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On a priori ground, there is no reason to assume that assimilation
rates of an external limiting facteors are related to the capacity of
photosvnthesizinog centers. Thus, parameters & arid F. should be
regarded as  independent 1n prabability sense, so that their joint
probability density Ffunction becomes & product of individual probability
density functions. Since nothing ig known about their form Etiiﬂiiiiiikilh
a most ogeneral standard probability function, the same for all a. and
Fms should be tried. For essentially positive variables, it will be the
Gamma probability density function (Feller, 19&8&). As applied to our

model , it may be sxpressed as follows:

By
fla,) = explilo.=101ln & = Boa.) (&)
rion)
Hﬂ'
fiFy = explle=131ln P - pf) {9

rio) LQT{##? — ‘:;2"5
Y= ] F stands for Pm (here and Ffurther), o0 and gy are the
parameters af the probability density functions, and 1.} is the Hamma
function.

Let ws point out briefly the main properties of forms (8)-{%) that
will be further important. At o4 > 1 and ¢ »* 1, being plotted as
functions of a, and F, they results in bell-shaped curves while at
% = 1 and ¢ =}, degenerate into exponential density probability
functions. At o4 & 1 and ¢ £ 1, they also have exponent-type shape and
change from + e to O but more steeplv. They bave means o /B, and o/
Mt Fixed ratios o/f and o/p oand &y, ¢ o——e o, theay turn into
Pirac’'s Delta Ffunctions &z — ey/Bu) and &P — /1) equal to + o at
2= o SfRa, P = o/, and to 0 elsswhere.

Values oy, Biy ¢ and p, as the parameters of probability density
function, will determine +the shape of the overall photosynthesis rate
functiaon and acguire a physiological meaning: ratios o/ 0 are the
initial slopes with respect to wvariables x,, and ratio o/p is the
physinlogical plateau lavel for the many-dimensional heterogensous

response surface (7).
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Heterogerneity: Two-Dimensional Case

As well as in the case of homogeneity (4), a two-dimensional (with respect
to the parameters) heterogeneous photosynthesis rate, p, will bes a
function with saturation of an only limiting factor, % (e.g. light or
CO=z) .

Substituting the two-dimensional homogeneous response surface (4)

into integral (7) one gets:

(-] =]
p = [?(P}j}{a} min fax, P} da dF (10
o t

where $(.) is the Gamma probability density functions defined by (8B} or
(9}, and the superflucus indexes were dropped for the sake of simplicity.
Intagral (10) represents p as a two-dimensional response surface of
parameters a and P {at x fixed), or as a one-dimensionsl function of x (&t
a and P fixed). In the following derivations, ® is considered fixed.

Let us start with evaluation of the inner inteoral in (100, i.e. one
with respect to a, at arbitrary finite and pesitive o, = o and 3, = f.

The evaluation results in the following tormula:s

H iF P F
p o= T[ Mkl —— I + r[ Dy e ] (11)
Ar o o] r{o) K
where L o R is the incomplete Gamma function and rl.,.}y the

complementary incomplete Gamma function.

Though in modern computer software, both (.,.) and r(.,.) are
atandard inserted Ffunctions along with the alementary funchtions,
expression (11) still remains rather involved and generally inconvenient
for practical purposes. Assuming, however, that parameter i an integer

(o 2 1), one obtains:

ol o i (iR u)*
p o —— [1 - @ se ] e ) ] 12
i3 i=g o il

for arbitrary positive (3.
In wmimplest particular case, at o = 1, form (D} immediately follows

PR — e v —
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from (120

-1 22
p = (x/B) [1 = exp(=AF/x)] (13)

Expressions (11) -~ (13), plotted as a Functions of the external
density x, provide a set of smooth convex curves starting from the origin
with the initial slope &' = «/B (the mean &) and eventually saturating at
a Fixed plateaw, P. Since integral 1503 iz eqgual to its inner integral at
fUP) = &d(P-c/ )}, i.@. &t o/p = F, v — @, (11) - (13} describe thes case
of  the snergetic heterogeneity (finite parameters o and @#) combined with
the capacity homogenaity (infinite parameters o and pl.

Substituting form (12) into the outer integral in (10) and evaluating

the latter with respect to P, one procures: |

o [+ i o+i=-1 LR eV B
P e [i = E ol = <) ) ] 1149
(F] i=p o i (p + iy
o+i~-1 (r+i=—1)1
where { } = e i s the binomial coefficient, o is an integer
i {e=1)'13!

(2 1), and By o, and p are arbitrary positives.

Similarly to the above, in the simplest case, at o= 1, it Ffollows
from (14 :

. K
X P r 1
i 8 [1 % (u + ﬁm}«-] @—Cu-p;}w'ja i

Formulae (14)-(15) plotted as Functions of x give smooth conves

curves with the initial slope a' = o/ff (the mean a) and the plateau
P" = o/p (the mean P). They describe the phenomenon of the complex
structural heterocgeneity with the restriction +or & to be integer: the
energetic heterogeneity (finite parameters o and (3) combined with the
capacity heterogeneity (finite parameters ¢ and p).

A remarkable peculiarity of the formalism obtained is that forms
14y - (15} reduce to the rectanoular hyperbola (F) in their simplest
particular case. Setting o = ¢ = 1 in (14) (or o = 1 in (15)), one readily

tinds:
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k4
p = (1&)
o+ ux
Thus within the assumptions of our model, the rectangular hyperbola
represents a particular case of heterogeneity  (mathematically, the
simplest one). Inversely, Fforms (142 arnr (15) b oimex consequent

generalizations of this hyperbola for o and o different from 1.

The set of analytical expressions, following from integral (10), can

be expanded by reversing the order of integration in (10):

o L]

p = I*F(a?[ﬂﬁ min Yax, P) dF da (10°)

[=] Q

At arbitrary positive ¢ and u, computation of inner integral an (10°)
wiml ez

i &M
p = Tir+l, pax) + rioe, pax) (17)
e riod
At o integer (o 2 1), one obtains +fram (17):
o [id i Cpax ) *
p = - [1 — grpax B (1 — =} wqu——-] (18)
n i=p o i!

In its simplest particular case, at ¢ = 1, form (OO
(16

follows fram

—= p o= (170 (1 = enpli-pax)) (1)

Once more, (17)=-(19) give a set of smooth convex curves with the fixed

initial slope a and the plateaa P’ = o/n (the mean P). Since integral

(10" ds egual to its inner integral at fla) = dla-a/B), i.@. at /3 = a,
& e o2, (17) = (19) represent the case of +the capacity heterogeneily
(fipite parameters ¢ and W} combined with the energetic homogeneity
tinfinite parameters o and 3.

Substituting (18) into the outer integral in (10°) one obtains:

o [ i o+l -1 B
p = - [1—1‘.‘(1 - =) bl ] {20
i=0 r i (A + px)y=ma

At ¢ = 1, form (20) becomes
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PO-“'H.L'

- e o

£ n [ (B + px)= ] = Gi*J”?i) ¥
Faormulae (20) - (21) give a set of curves with the initial slope a' = a/fi
and asymptote P’ = o/p. They depict the complex heterogeneity with the
rastriction for ¢ to be integer: the energetic heteroageneity (finite & and
B) combined with the capacity heterogeneity (finite o and p) .

As it should be expected, form (21) &t = 1 is iddentical to Fform
(15) at o = 1, i.2. reduces ta the rectangular hyperbola (L&), Generally,
it can be esasily shown by induction that formula (20) calculated at o = m
is equivalent teo formula (14) at o = m, where m is an inkteogsr.

It +ollows from the above deduction that the energetic heterogeneity
described by (12 im a limiting case of the complex haterogensity
described by (14) at o/p=F, ¢ — om; then, the capacity heterogensity
(18) is a limiting case of the complex heterogeneity (200 at o/f = a,
B e 00, BE well, the Blackman's homogeneity (4) is a limiting case +for
both the energetic heterogeneity ldescribed by (11) or (123)), at o/ = a,
o = o, and of the capacity heterogeneity (described by (173 o (18)), at

c/ip = F, o

[1-1%

Heterogeneity: Incomplete Three-Dimensional Case

(lsotropy and Anisotropy)

This case sets relationships between photosynthesis rate, p, and two
@xtarnal densities, X1 and ¥ (@.g. liaht or COz), that can
alternate as limiting factors. Only & relative ssturstion iz possible
Feres at M (¥ =) Fived (ar restricted) and X (34 ) em=eem e, [+ the
both densities increase without limit, & nonphysiological result of p
approaching infinity will follow, as well as in formula (1), and the below
inferring become irrational.

y@#ﬁ@uiet similarly to the sbove, substituting the homogeneocus response
gurface (9) into integral (7)) one gets:

(=-] ==}
p = !}tam}[ flas) min {ai1xa1, &xrad da:. dam (2

=] =}
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where f(a,) and Fflaz) are the Bamma probability density functions
gefined by (E). Integral (22) represents p as a two-dimensional response
surface of parameters a: and a=, at xy and ®x Ffixed, or of N;
ancd Xz, abt a, and ax fFixed.

Evaluating the inner integral in (22) one gets:

Ha 1@k K o fiazr=
p = — '\’{C’.;"'l, ] +* r‘[q:-., -{ (23

Bar{s,) Ha My ) W

that ids similar to (11). Expression (23} represents the case of K.
(9 emd varwing in its entire range whilst xe (x,) is fixed or

restricted from the above as a relative capacity plateau. Being plotted as

a function of xa f(ar x=), (23 procures, a set of conver curves
starting +rom the origin Wi th the initial sl oppe il = oy Ba

(s’ = ow/llz) and eventually saturating at the Felative plateau,
BpXa l(@aixad. Since integral (22 is egual to its  dinner integral at

flax) = dlas-x=/Bn), i.e. at o=/ 3a = F, o ea, (EE)

describes the case of the energetic heterogenseity with respect to the
first factor (finite parameters o, and fa) combined with the eneraetic
hﬂmﬁu.E,?izhwith respect to the second factor linfinite parameters oz
and fn). Physiclogically, this case may be conceived as corresponding to
the isotropy to carbon dioxide combined with anisotropy to liaoht.

Automatically substituting asMe for F in formulas  (12) - (16) one
gets their conseguent parallelisms, analogues of the forms (0 and (D)
amang them. The simplest case of mubual anisotropy will be:

Haida
— {24)
BaratBama

p)::

i.e. the rectangul ar hvperbol a with respect to both xi: and K=o
aquivalent to farm (1).

Since the problem is symmetrical (mathematically, x. and xm are
comnmutative) , inversion of order of integration in (22) doss not exbtend
the number of analvitical solutions for o= integer, and expressions (17 -

(21 have no parallelisms here.

u%p Heterogeneity: Three-Dimensional Case

Mow we shall find heterogensous photosynthesis rate, p, corresponding to
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the three-dimensional (with respect to the parameters! homogeneous Fform
(&), Bince the plateaa level, P, 18 now (in contrast to the previous
section) taken into account, a resulting Function will saturate either
with one of the ftwo +actors, xa (=1 Mo (.. light or CO=)
approaching infinitv, or with both x., #; — w, so the absol ute
saturation is reachable here.

Though an inferring guite similar to the above can be perform for the

A

general forms of the Gammma probability density functions (8) and (9,
resulting expressions will be too cumbersome. Thus, for the sake of
gsimplicity, we shall demonstrate our method only for the exponential
probability density functions that follow from (B and (9) at o, = 1,4
o = 1. Under such conditions, integral (7) transforms into

o L] w

p o= [ﬁ1eupi-ﬂga;)da;[ﬁ=expt—ﬂ:a:)damjgixi>pn*H"dP (25
=] =] (=]

where pixa) is taken according (&). Evaluation of (25) with respect to

Ay vields:

(22/02) (1 = expi=fiasa/aldy, at amy=m < F
= [ {208

(a2 /3a) (1 = expl=fP/ %1, at &xx=a » P

Far integration with respect to az, (24) must be substituted into the

tirst inner integral of (23). Its evaluation provides

i
p = {1 — expl-—(B./Ma+Ba/u=0F13 1270
Baid¥a + fAz/Ha

Finally, integration with respect to P gets

1
p = 2
o+ Mol + Mo/

i.@. formula (2) is obtainesd.
FPhysiclogical meanings can be reasdily attribouted to espressions

(2&) — (28) as It was done in garlisr sections.
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Conclussion and Discussion

Various deviations from Blackman’'s homoaeneity are expressed in owur model
in terms of parameters o, y o and g of the probability density functions.
It was proved that at fixed ratios o/f8. and eofp, and increase of
either pair (o, (i) or (r, W, deviations +from Blackman's uwltimate
homogeneity decrease. The character of this decrease (for the two-
dimensional case) 18 shown in Fig.3-4&.

It ig clear from Fig.3-6 that at the same external limiting density
¥, any deviation Ffrom homogeneity lowers the rate of photosynthesis, p.
Such a deviation increases with increasing either kind of heterogeneity.
Mathematical ly. this statement (connected with Lhe well-—known
isoperimetric probl em af variational calculus) cann be proved by
mimimization of integral (10) (or (107)) wusing the Lagrangian factor.

The model was derived mechanistically, from very ogeneral and simple
assumptions. As it was shown, *the four out of six acknowledged semi-
empirical forms, listed above, namely (A}, (E), (D), (F), follow from our
formalism as particular cases. Though forms (B) and (E) were not covered
by our model, they can be easily simulated by it. In Fig.7, curve (B}
(dished line) is restrained between two normalized (P = 1, ¢ = p= 2, = 3)
response  curves of the case of capacity heterogeneity combined with the
ensrgetic homogeneity {(form (i8)). A curve simulated accordipg to the more
general farm (17} at ¢ =u = 2.5 practically coincides with curve (B) (see
Tabl. 1). As well, in Fig.8, curve (E) (dished line) is restrained between
two normalized (o= g = ¢ = p = 3.0, = J.8) response curves of the general
case of complex heterocoeneityv (integral (10)). A curve simulated according
(17 at = f=¢= 4= 3.5 lies very closely to curve (E) (see Tabl.l).
Thus the both semi-empirical curves (B} and (E) can be conceived as good
approximations of our mechanistic model.

Beirng & wnifving one, the mnodel presented brings a physiological
meanings to the above list of former models none of which, to the beast of
our krnowledge, wae never properly derived.

In its most ageneral Fform, ow two-dimensional model has  four
arbitrary parameters. Such & number of parameters obviously guarantees a
good fitting of a theoretical model te real data bubt seems Lo be
excesasive. It worth noting however that in the exanples demonstrated by

Fig. 1 = 7 the model presented was treated as a three-parameter, and in
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Fig. B, even as a two-parameter one. Thus the number of parsmeters
introduced is equal or less than in the purely empirical thres-parametsr

non-rectanaul ar hyperbola

FZa = Flax+F) + aF = 0 {29

which is freguently used in cases where none of two-parameter models give
a good fitting.

As it was mentioned in Introduction, any response curve plotted in
the secondary coordinates is generally anticipated to lie above "Lhe main

diagonal® corresponding to the rectangular hyperbola. The model presented,

in principle, covers also cases of response curves lyving under "the nain
disgonal" &8s it clear from Fig. 4 and Fig. &. For these curves, the
restriction of parameter « or ¢ to be integer (a conditiom to which most

of the above analytical solutions ensuing from our model, chey) may be
essential. But for curves said to be physiologically relevant, i.e. lyinag
ahove "the main diagonal', this restriction is apparently unessential
since in sach practical Ffitting problem, a scientist deal not with
parameters o, B, ¢ and p but with their ratios.

The approach presented here and the family of forms following from
spems to be a plausible mechanistic treatment that brings together Bose's

and Blackman’'s principles of representation of the response curves.
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Table 1
Mumerical comparison of curves (B} and (E} with their simulations
according the model presented (in secondary coordinates)

(R fHur mode) (E) Our model
P P/
0. 000 1. 0000 1. 0000 1. 0000 1. G000
0. 2000 O. FESS 0. 5881 0. 2798 0. 844
o 4000 0, 7442 0. 7434 0. 7165 0. 7221
0. 6000 0. 84654 0. 8594 0. BO00 0. 75979
. BO00 0. 7282 0.7172 0. OG0 0. 5273

1.G000 Cra QOO0 0, OO0 D. G000 0. 0000
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Figure

Figure

Figure

Figure

Figure

Figure

Fiouwre Legends

1. Normalized (a = 1, PF, = 1) response curves (8) - (F} (zee
text) representing the overall rate of photosynthesis, p, as a

function of an external factor density, x.

2 Mermalized ((a =1, P, = 1) response CLF VeSS CAY = LF)
plotted in  (p/u-pl)-coordinates. Maximum ordinate cof them
correspoands to  the initial slope, a, maximum abscissa, to the

asymptotic plateau level, F.,.

S. bMormalized (F, = 1, o/ = 1) responss curves for the case
of the eneragetic hetercgensity combined with the capacity
homogeneity {(form (12}, in (p/x-pl—coordinates. The Blackman's
homogenerty case (the upper and the lateral right edges of the
unit square) and the rectangular hyperbola are depicted by
dished lines. Deviations from Rlackman’'s form increase with

decreasing o = B0, 15, S, 2y 1

4. Mormalized (o0 = @ = 3, o/pu = 1) response curves for the case
of the complex heterogeneity with restriction fo o to be
integer (form (14)), in (p/u—p)—coordinates. The limiting case
(form (12) at o« = [ =3) 19 depicted by dighed line and marked
iNF. Deviations +rom this limiting CaseE increase with

decreasing ¢ = 20, 8, 2y 1, 0.3; .1, G5,

S. Normalized (P, = 1, o/u = 1) response curves for the case
of the capacity heterogeneity combined with the energetic
homagensity (form (18)), in (p/x—p)-coordinates. The Hlackman's
homogeneity case (the upper and the lateral right edges of the
unit sguare) and the rectangular hyperbola are depicted by
dished lines. Devistions JFfrom Blackman's Horm increase with

decreasing « = 80, 15, S, 2, 1.

&. Normalized (o/ff = 1, ¢ = p = 3) response curves for the case
of the complex heterogeneity with restriction fo o Lo be

integer {(form (2000, in ip/x-pl-coordinates. The limiting case
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Figurea

Fiaure

(form (18 &t o = p =3) is depicted by dished line and marked

INF. Deviations £ 1= cam this Limitdng case  increase with

decreasing ¢ = 20, 5, 2, 1, 0.3, 0.1, 03,

7o Normalized (Pm =1, a = 1) response curve (B) {dished
line) restrained between two normalized (P, = t, ¢ = p 2, =3)
Fesponse curves of the case of capacity heterogeneity combined
with the energetic homogeneity (form (18)), in Rp =) -
coordinates. & curve simulated aceo-oing fo-m (17) alt

e = = 2.5 practically caincides with curve (B) {see text).

8. Narmalized (FPp = 1, a = 1) response curve (E) (i shed

cline) restrained between two normalized (o = .= g = p =%,0,

= I.8) response curves of the general case of comp L s
heterogeneity (integral (10)), in (p/u=pl=-coordinates. A curve
simulated according (17) at o= = ¢ = p =3.5 lies very

closely to curve (E) (see taut).
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