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ABSTRACT

A stochastic mathematical model is presented resulting in a family of formulae and curves that express
photosynthesis rate of a heterogeneous tissue as a function of external limiting factors. As a bench 
mark, the Blackman-type piecewise-linear curve has been taken, its parameters interpreted as random 
values of the gamma distribution. The model explicitly distinguishes and mathematically describes 
two kinds of heterogeneity. Some acknowledged semi-empirical light-, H2O- and CO2-response curves
deduced as special cases of the model and received theoretical substantiation.

INTRODUCTION

Chloroplasts of a vascular plant organ work as assembly-lines utilising the H2O, CO2 and PAR 
(photons, physiologically active radiation) as irreplaceable components. Chloroplasts differ in size and
receptivity that cause heterogeneity of tissues. Were chloroplasts identical, the biomass synthesis 
would be well described by the idealised Blackman bottleneck slope-and-ceiling curve [1]:

(A)

also known as a piecewise-linear curve [6], where r is photosynthesis rate, x is an external limiting 
factor (H2O, CO2, or PAR) consumption intensity (or availability), and constant positive parameters s 
and P are initial slope and final plateau level of the curve, respectively (see Fig. 1), the former 
characterising efficiency, the latter, capacity of a biomass creating unit (chloroplast).

In practice, however, smoothed convex curves are in use [2, 3, 4, 5, 7, 8]:

(Jassby & Platts) (B)

(Peat) (C)

(Thornley) (D)

(Vollenweider) (E)

(Baly) (F)

Normalised (A)  to (E) curves are plotted in Fig. 1a in (x, r)-coordinates, and in Fig. 1b, in the 
George Scatchard (r, r/x)-coordinates, the latter showing the whole range of x ϵ [0 ≤ x ≤ ∞) and r ϵ [0 ≤ 
r ≤ P] compactly in one 1×1 square, in arbitrary units (a.u.).
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Fig. 1a. (A) to (F) photosynthesis response curves as
functions of a limiting factor, in arbitrary unites. 

Fig. 1b. (A) to (F) photosynthesis response curves in the
Scatchard (r, r / x)-coordinates. Curves (C) and D) are

symmetrical with respect to the x = 1 diagonal (dashed).

It is worth to mention that in the Scatchard coordinates, the Peat curve (C) is the inverse function (ƒ-1) 
of the Thornley curve (D), and vise versa (the curves are symmetrical with respect to the diagonal 
x = 1 (r/x = r) of the Fig. 1b square.

The formulae (B) to (F) are commonly understood [7, 8] as researchers’ cute semi-empirical 
insights rather than theoretically established laws. We aim to prove that all of them (and a wealth of 
others) follows from the Blackman bottleneck formula (A) as special cases if a stochastic approach is 
applied.

STOCHASTIC APPROACH: S-VARIATION CURVES

Let the final plateau level, P, in Eq. (A) be a constant real-valued positive parameter, and the initial 
slope, s, a random number distributed according to the gamma probability density function with the 
mean α/β and the variance α/β2 (see Fig. 2):
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(G1)

Here α and β are positive parameters, and Г(α) is the gamma function. 

Fig. 2. Gamma distribution (G1), in semi-logarithmic
scale, for α/β = 1, α/β2 = 1, and α = 1,= 2, = 5, = 15, = 90,

and = ∞.

With such an assumption, photosynthesis rate expectation ES (r | x) for the Blackman bottleneck model 
(A) is 

(1)

where Г(.) is the gamma function, γ  (.,.) is the lower incomplete gamma function and Γ(.,.) is the upper
incomplete gamma function.

Some normalised ES curves (α/β = 1, P = 1) corresponding to Eq. (1) are plotted in Fig. 3a and 
Fig. 3b. 
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Fig. 3a. Normalised (α/β = 1, P = 1,) ES response curves,
for α = 0.015, = 0.06, = 0.14, = 0.27, = 0.5, = 1, = 2, = 5,

= 15, = 90, and = ∞, in arbitrary units. At α = ∞, ES curve
transforms into the Blackman piecewise-linear curve

(A).

Fig. 3b. Normalised (α/β = 1, P = 1) ES response curves,
in the Scatchard (ES, ES / x)-coordinates, for α = 0.015,

= 0.06, = 0.14, = 0.27, = 0.5, = 1, = 2, = 5, = 15, = 90, and = ∞
(dotted). At α = ∞, ES curve transforms into the

Blackman piecewise-linear curve (A). 

Any ES curve generated by Eq. (1) is convex, with the first derivative decreasing strictly 
monotonously from the initial slope 

(2)

(i.e. from the averaged s) to 0 at x → ∞, while

(2a)
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At α/β constant and α → ∞, the gamma distribution (G1) approaches Dirac delta function δ(s), 
and the stochastic model set by Eq. (1) regenerates into the initial deterministic one with s = α/β:

(3)

i.e. recurs back into the Blackman bottleneck formula (A) with the initial slope s = α/β. Physically, it 
means that S-variation heterogeneity with respect to the initial slope transforms into full homogeneity 
(all chloroplasts have the same receptivity to the limiting factor).

At α = 1, Eq. (1) reduces into

(4)

which is identical to Thornley’s formula (D) with the initial slope s = 1/β and the final plateau level P.
All the five acknowledged curve (B) to (F) are numerically compared with the ES curves (1) in 

Table 1. As a criterion, the residual Δ = (ES – r NAME) has been chosen, with the global maximum of |Δ| 
to be minimised, along with an assumption that approximation is acceptable if |Δ| ≤ 1.0%P on the 
interval of x ϵ [0, ∞).

Table 1
ES curves (1) vs. the acknowledged curves (B) to (F), 

matching the criterion of the max |Δ| = |(ES – r NAME)| minimised.

Jassby & Platts (B) ES: α = β = 2.897
|Δ| > 1.0% P. Δ reaches its max of +0.02724 at x = 0.6406 and its 
min of -0.02724 at x = 2.0936. Not acceptable.

Peat (C) ES: α = β = 1.298
|Δ| > 1.0%P. Δ reaches its max of +0.059240 at x = 0.6089 and its 
min of -0.059240 at x = 3.5461. Not acceptable.

Thornley (D) ES: α = β = 1 Δ ≡ 0 on x ϵ [0,+∞). Curves are identical.

Vollenweider (E) ES: α = β = 1.725
|Δ| > 1.0%P. Δ reaches its max of +0.01879 at x = 0.5389 and its 
min of -0.01879 at x = 2.4388. Not acceptable.

Baly (F) ES: α = β = 0.5638 
|Δ| > 1.0 %P. Δ reaches its max of +0.04990 at x = 0.5417 and its 
min of -0.04990 at x = 12.44. Not acceptable.

According to the criterion chosen, it may be concluded from the Table 1 that the expressions (B), (C), 
(E), and (F) were not constructed for a description of the S-heterogeneity, while the Thornley formula 
(D) describes just this particular case of heterogeneity.

At any integer α > 0, Eq. (1) transforms into 

(5)

Eq. (5) is a source of simple and ostensive algebraic expressions for the S-heterogeneity response 
curves having the real-valued initial slope α/β and final plateau level P, with the Thornley (D) formula
as it simplest case at α = 1.

At β constant and α → ∞, Eq. (1) and Eq. (5) transform into the Heaviside step function H(x) for 
x ≥ 0, equal to 0 at the origin and to P for x ϵ (0, ∞). 

STOCHASTIC APPROACH: P-VARIATION CURVES

Let the initial slope, s, in the Blackman model (A) be a constant real-valued positive parameter, and 
the final plateau level, P, a random number distributed according to the gamma probability density 
function with the mean κ/λ and the variance κ/λ2:

(G2)
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With such an assumption, photosynthesis rate expectation EP (r | x) for the averaged Blackman 
bottleneck model (A) is 

(6)

where Г(.) is the gamma function, γ (.,.) is the lower incomplete gamma function and Γ(.,.) is the upper
incomplete gamma function.

Some normalised EP curves (s = 1, κ/λ = 1) corresponding to Eq. (6) are plotted in Fig. 4a and 
Fig. 4b. As expected, the P-variation heterogeneity decreases with increasing κ, and at κ = ∞ 
transforms into the full Blackman-type homogeneity.

Fig. 4a. Normalised (s = 1, κ/λ = 1) EP response curves,
for κ = 0.015, = 0.06, = 0.14, = 0.27, = 0.5, = 1, = 2, = 5,

= 15, = 90, and = ∞, in arbitrary unites. At κ = ∞, EP curve
transforms into the Blackman piecewise-linear

(A) curve.

Fig. 4b. Normalised (s = 1, κ/λ = 1,) EP response curves,
in the Scatchard (EP, EP/x)-coordinates, for κ = 0.015,
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= 0.06, = 0.14, = 0.27, =0.5, = 1, =2, = 5, = 15, = 90, and = ∞
(dotted). At κ = ∞, EP curve transforms into the

Blackman piecewise-linear curve (A).

Any EP curve generated by Eq. (6) is convex, with first derivative decreasing strictly 
monotonously from the initial slope 

(7)

to 0 as x →∞, while EP approaching the final plateau level κ/λ (the averaged P):

(7a)

If the ratio κ/λ is constant and κ → ∞, gamma distribution (G2) approaches the Dirac delta 
function δ(s), and the stochastic model set by Eq. (6) transforms into the initial deterministic 
one

(8)

i.e. into the Blackman bottleneck formula (A) with P = κ/λ. Physically, this limiting case corresponds 
to the full capacity homogeneity of the photosynthesising tissue (all chloroplasts have the same plateau
level, or a capacity, with respect to the limiting factor).

At κ = 1, Eq. (6) reduces into

(9)

which is identical to the Peat formula (C) with the initial slope s and the plateau level P = 1/λ.
All the five acknowledged curves (B) to (F) are numerically compared with the EP curves (6) in 

Table 2. As a criterion, the residual Δ = (EP – r NAME) has been chosen, with maximum of |Δ| to be 
minimised, along with an assumption that approximation is acceptable if |Δ| ≤ 1.0 %P on the interval 
of x ϵ [0, ∞).

Table 2
EP curves (6) vs. the acknowledged curves (B) to (F), 

matching the criterion of the max |Δ| = |(EP – r NAME)| minimised.

Jassby & Platts (B) EP: κ = λ = 2.6037
Δ ≤ 0.13% P. Δ reaches its max of 0.001266 at x = 0.140 and its 
min of -0.001266 x = 1.158. Acceptable.

Peat (C) EP: κ = λ = 1 Δ ≡ 0 on x ϵ [0,+∞). Curves are identical. 

Thornley (D) EP: κ = λ = 0.711875
Δ > 1.0% P. Δ reaches its min of -0.075263 at x = 0.6049 and its 
max of 0.075263 at x = 4.4793. Not acceptable.

Vollenweider (E) EP: κ = λ =1.429962
Δ > 1.0% P. Δ reaches its min of -0.027597 at x = 0.7251 and its 
max of 0.027597 x = 2.9937. Not acceptable.

Baly (F) EP κ = λ = 0.305633
Δ > 1.0% P. Δ reaches its min of -0.075126 at x = 0.7622 and its 
max of 0.075126 x = 8.3362. Not acceptable.

According to the criterion chosen, it may be concluded from the Table 2 that the expressions (D), (E) 
and (F) were not constructed for a description of the P-variation heterogeneity, while the Peat formula 
(C) ideally describes just this particular case of heterogeneity, and the Jassby & Platts formula (B) is 
also fit for the P-heterogeneity as it excellently simulated by our model.

At any integer κ > 0, Eq. (6) transforms into 

(10)
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Eq. (10) is a source of simple and ostensive analytical expressions for the P-variation heterogeneity 
response curves, having both the real-valued initial slope s and final plateau level κ/λ, with the Peat 
(C) formula as it simplest case at κ = 1.

Let α = κ = u, and β = λ = w. In the Scatchard coordinates, an EP (w, u) curve is symmetrical to an 
ES (u, w) curve with respect to the diagonal x = 1 (EP/S/x = EP/S), i.e. an EP/x is the inverse function (ƒ-1) 
of an ES /x. Fig. 4c compares some EP (w) and ES (u) curves for w = u. It is clear that at w = u → ∞, 
EP (w) → ES (u) in such a way that ES (90) and EP (90) are already practically indistinguishable. On the 
contrary, at w = u → 0, EP curves lean to the abscissa, while ES creep along the ordinate.

Fig. 4c. Normalised (α = β = u, P = 1) ES (u) curves vs. 
normalised (s = 1, κ = λ = u) EP (u) curves 
in the Scatchard (ES/P, ES/P /x)-coordinates

for u = 0.02, 0.2 (dashed), 1, 5, 90 (solid), in arbitrary units.

At s → ∞, Eq. (6) and Eq. (10) transform into the Heaviside step function H(x) for x ≥ 0, equal to 
0 at the origin and to κ/λ for x ϵ (0, ∞). 

STOCHASTIC APPROACH: SP/PS-VARIATION

Let both the initial slope s and the plateau level P of the Blackman model (A) be random 
uncorrelated numbers with the gamma distributions (G1) and (G2). With such an assumption, the 
photosynthesis rate expectation, according to Eq. (1), is 

(11)

or, according to Eq. (6), with reversing integration order,

(12)

Since ESP and EPS obtained from the same assumptions and differ in the order of integration only, 
ESP ≡ EPS.

Some normalised ESP/PS curves (α/β = 1, κ/λ = 1) corresponding to Eq. (11)/(12) are plotted in Fig.
5a to Fig. 5d. 
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Fig. 5a. Normalised (α/β = 1, κ/λ = 1) ESP/PS curves for
α = β = 3 and κ = 0.01, = 01, = 0.5, = 1, = 2, = 5, and = ∞, in

arbitrary units.

Fig. 5b. Normalised (α/β = 1, κ/λ = 1) ESP/PS response
curves in the Scatchard (ESP/PS , ESP/PS / x)-coordinates, for
α = β = 3 and κ = 0.01, = 0.1, = 0.5, = 1, = 2, = 5, and = ∞, in

arbitrary units.
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Fig. 5c. Normalised (α/β = 1, κ /λ = 1) EPS curves for
κ = λ = 3 and α = 0.01, = 0.1, = 0.5, = 1, = 2, = 5, and = ∞, in

arbitrary units.

Fig. 5d. Normalised (α/β = 1, κ /λ = 1) ESP/PS response
curves in the Scatchard (ESP/PS , ESP/PS / x)-coordinates, for
κ = λ = 3 and α = 0.01, = 0.1, = 0.5, = 1, = 2, = 5, and = ∞, in

arbitrary units.

Any ESP/PS curve generated by Eq. (11)/Eq.(12) is convex, with first derivative decreasing strictly 
monotonously from the initial slope (the averaged s)

(13)

at the origin to 0 as x →∞, while ESP/PS approaching the final plateau level κ/λ (the averaged P):

(14)

As expected, at fixed κ and λ and a constant ratio α/β, the greater α, the less heterogonous a 
photosynthesising tissue is with respect of the initial slope α/β, so that the ESP/PS curve tends to the EP 

curve as α → ∞. Similarly, at fixed α and β and a constant ratio κ/λ, the greater κ, the less 
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heterogonous a tissue is with respect of the final plateau level κ/λ, so that the ESP/P  curve tends to the 
ES curve as κ → ∞.

If the ratios α/β and κ/λ are constant and α, κ → ∞, the stochastic model set by Eq. (11) or Eq. 
(12) regenerates into original deterministic one,

(15)

i.e. into the Blackman bottleneck formula (A) with s = α/β and P = κ/λ; or, at α/β = κ/λ = 1, into its 
fully normalised form with respect to the both variables,

(15')

At α = κ = 1, both Eq. (11) and Eq. (12) transform into 

(16)

i.e. into the Baly rectangular hyperbola (F) with initial slope 1/β and final plateau level 1/λ.
All the five acknowledged curves (B) to (F) discussed above are numerically compared with the 

ESP/PS curves (11)/(12) in Table 3. As a criterion, the residual Δ = (ESP/PS – r NAME) has been chosen, with 
maximum of |Δ| to be minimised, along with an assumption that approximation is acceptable if |
Δ| ≤ 1.0 %P on the interval of x ϵ [0, ∞). 

Table 3
ESP/PS curves (11)/(12) vs. the acknowledged curves (B) to (F), 

matching the criterion of the max |Δ| = |(ESP/PS – r NAME)| minimised.

Jassby & Platts (B)
ESP/PS:

α = β = 160
κ = λ = 2.6495

Δ ≤ 0.16% P. Δ reaches its max of +0.001522 at x = 0.4342 and its
min of -0.001522 at x = 1.2491. Acceptable.

Peat (C)
ESP/PS: 

α = β =140
κ = λ = 1

Δ ≤ 0.20%P Δ reaches its only min of -0.00192898 at x = 2.0047. 
At α = β → ∞, Δ → 0 (ESP/PS reduces into EP). Acceptable.

Thornley (D)
ESP/PS: 

α = β = 1
κ = λ = 140

Δ ≤ 0.14%P. Δ reaches its only min of -0.001310 at x = 1.0012. 
At κ = λ → ∞, Δ → 0 (ESP/PS reduces into ES). Acceptable.

Vollenweider (E)
ESP/PS: 

α = β = 2.975
κ = λ =3.9203

Δ ≤ 0.37%P. Δ reaches its min of -0.003679 at x = 1.2885 and its 
max of 0.003679 x = 4.8087. Acceptable.

Baly (F)
ESP/PS 

α = β =1
κ = λ = 1

Δ ≡ 0 on x ϵ [0,+∞). Curves are identical. 

According to the criterion chosen, it may be concluded from the Table 3 that all the acknowledged 
curves (B) to (F) discussed above can be closely simulated by our model, with the Baly curve 
following from it as a simplest special case. In addition, the Peat (C) curve is the limiting case of ESP/PS

at α = β constant and α → ∞ (ESP/PS reduces into EP), while the Thurnley (D) curve is the limiting case 
of ESP/PS at κ = λ  constant and κ → ∞ (ESP/PS reduces into ES). In other words, ESP/PS curves are fit to 
simulated all the known special cases of S-heterogeneity and P-heterogeneity as well as their mixtures 
(the complex heterogeneity).

At integer α ≥ 1 and integer κ ≥ 1, Eq. (11) and Eq. (12) take the following forms, respectively:

(17)
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(18)

Eq. (17) and Eq. (18) are a source of simple and ostensive analytical expressions for the SP/PS-
heterogeneity response curves, having the real-valued initial slope α/β and final plateau level κ/λ. 
Since any ESP ≡ EPS, expressions (17) and (18) are transposable so with a large κ (17) is shorter and 
simpler, while at a large α, (18) is preferable. 

Two simplest formulae,

(19)

and

(20)

immediately follow from (17), at α = 1 (the initial slope 1/β, the plateau level κ/λ), and from (18), at 
κ = 1 (the initial slope α/β, the plateau level 1/λ), respectively.

Obviously, at a constant ratio κ/λ = P and κ → ∞, expression (19) transforms into the Thornley 
formula (D):

(21)

while at a constant ratio α/β = s and α → ∞, expression (20) transforms into the Peat formula (C):

(22)

Generally, at a constant ratio κ/λ = P and κ → ∞, a ESP algebraic function defined by (17) turns into a 
ES algebraic function set by Eq. (5), while at a constant ratio α/β = s and α → ∞, a EPS algebraic 
function defined by (18) turns into a EP algebraic function set by Eq. (10).

COMPARISON AND DISCUSSION

The stochastic approach developed here theoretically substantiated three of the acknowledged models, 
namely the Peat formula (C), the Thornley formula (D) and the Baly rectangular hyperbola (F), all of 
them following from our model as special cases with evident physical meaning. In contrast, it educed 
artificial nature of formulae (B) and (E) that had been developed as purely expedient makeshift 
empirical constructions, aimed to satisfy particular and rather sporadic sets of experimental data.

Our model explicitly distinguish two types of heterogeneity: S-variation (receptivity, or energy) 
heterogeneity (the ES curves, of which the Thornley curve is an example) and P-variation (or capacity)
heterogeneity (the EP curves, of which the Peat curve is an example). It also contemplates the mixture 
of the two, SP/PS-heterogeneity, a family of the ESP/PS curves, of which the Baly rectangular hyperbola
is the classical special case: a median of S-heterogeneity and P-heterogeneity represented in equal 
shares.

It was shown that a shape of an experimentally obtained curve can hint to a character of 
heterogeneity of a photosynthesising tissue. If in the Scatchard coordinates a curve leans towards the 
ordinate at smaller s, the S-heterogeneity prevail; if the curve gravitates towards abscissa at smaller P, 
the P-heterogeneity prevails.

All the acknowledged (A)  to (F) models are two-parameter ones, while the stochastic approach 
models presented here are tree-parameter (ES and EP curves) or four-parameters (ESP and EPS curves) 
ones, the characteristic that obviously makes them more flexible but, in the same time, more 
complicated and ostensibly not so easily implementable. But it doesn’t seem to be such a drastic 
disadvantage. In practice, experimentalists will never deal with parameters α, β, κ, and λ themselves 
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but rather with their ratios: the initial slope α/β and the plateau level κ/λ. Thus, all the ES, EP, ESP and 
EPS curves became actually two-parameter ones. And, of course, they have an already demonstrated 
practical strength of flexibility over the (A) to (F) models. Take, for instance, the Thornley curve with 
s = e =2.7183 and P = π = 3.1416. The expression (1) responds to it by an infinite set of the ES curves 
with the same initial slope s = α/β = 2.7183 and plateau level P = 3.1416, but with α (and, respectively,
β = s/α) taking any real positive value provided that the ratio α/β stay fixed (Fig. 6).

Fig. 6. The Thornley curve with s = e =2.7183 and P = π
= 3.1416 as a median of the wealth of the ES curves with
the same initial slope s = α/β = 2.7183 and plateau level

P = 3.1416, but with α taking any large or small real
positive value.

Nor the equations with gamma functions and integrals should be nowadays considered as too 
problematic when the experimental data handling is in question. But if, for any reason, simple 
formulae are preferable, the algebraic expressions (4) to (5), (9) to (10), and (16) to (20) presented 
above may be effortlessly used, and it is not a strict constraint that α and κ are integer in that 
expressions, because, as we have seen, it is the ratios α/β and κ/λ are the practically meaningful 
parameters, and, with β and λ real-valued, the ratios α/β and κ/λ have any real value, too.

Transposability (replaceability) of the expressions (17) and (18) provides another degree of 
implementation freedom, because we have in hand the method of two ways representation of identical 
but seemingly different formulae. Let α = 21, β = 3, κ = 1, and λ = 2. Since ESP ≡ EPS for any set of 
parameters α, β, κ, and λ, the following 21-component formula (a particular case of (17)):

(23)

is identical to the following simpler two-component formula (a particular case of (18)):

(24)

Not only vascular plants but also phytoplankton and other photosynthesising autotrophic cell 
populations can be covered by the approach developed here. It may have some implementation even 
beyond of biology as such. In agriculture and chemistry, the Blackman bottle-neck principle has been 
known since the 19th century as the Justus von Liebig law [9]. Adsorption and other processes, where 
a number of heterogeneous small units are to be saturated, may presumably be described by the same 
formalism. Assembly-line processes are also open to discussion which may lead to implementation in 
technology and economics.
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A straightforward weakness of the models presented is that only one limiting factor is taken into 
consideration. More detailed picture may require rotation of limiting factors to be addressed.
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